ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «Основы спутникостроения»

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень программы: базовый Возраст учащихся: 7-11 класс Срок реализации: 36 ак.ч

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
СОДЕРЖАНИЕ ПРОГРАММЫ	6
СОДЕРЖАНИЕ УЧЕБНОГО (ТЕМАТИЧЕСКОГО) П	IЛАНА9
ФОРМА КОНТРОЛЯ И ОЦЕНОЧНЫЕ МАТЕРИАЛЬ	Ы13
ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ	УСЛОВИЯ
РЕАЛИЗАЦИИ ПРОГРАММЫ	13
МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ УСЛОВИЯ	РЕАЛИЗАЦИИ
ПРОГРАММЫ	
СПИСОК ЛИТЕРАТУРЫ	14

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа «Основы спутникостроения» (далее — Программа) имеет техническую направленность и реализуется на ознакомительном уровне.

Программа разработана с учетом нормативных требований к программам дополнительного образования детей.

Актуальность

Актуальность Программы определяется запросом со стороны общеобразовательных учреждений на подобные программы, которые призваны вызывать у обучающихся интерес к инженерно-техническому творчеству, особенно в аэрокосмической отрасли Российской Федерации.

Обучение по Программе предполагает изучение основ проектирования и функционирования космических аппаратов.

Знание основ дает возможность погрузить обучающегося в изучение технических аспектов проектирования реальной космической техники, а также вызвать интерес к дальнейшему углублению знаний с целью дальнейшего профессионального и личного развития.

Цель программы

Целью программы является изучение основных аспектов проектирования и функционирования спутников, а также формирование соответствующей базы знаний, которая в дальнейшем позволит расширять и трансформировать знания в сторону ведения научной, исследовательской и инженерной деятельности обучающихся.

Задачи

Обучающие:

• ознакомить с основными этапами истории отечественной авиации и космонавтики;

- ознакомить с теоретическими и практическими основами функционирования спутников;
- ознакомить с основами работы в прикладных инженерных программах.

Развивающие:

- развивать навыки поисково-исследовательской деятельности;
- развивать техническое и творческое мышление.

Воспитательные:

- воспитывать у обучающихся дисциплинированность, ответственность;
- формировать навыки работы в команде;
- патриотическое воспитание молодежи.

Категория обучающихся

Обучение по Программе ведется в группах, которые комплектуются из учащихся 5-6 классов (10 - 11 лет).

Формы и режим занятий

Основной формой работы являются групповые занятия. На занятиях применяется индивидуально-дифференцированный подход. Практическая часть связана с работой со специализированным конструктором спутника.

Занятия проходят 1 раз в неделю. Продолжительность 1 занятия составляет 45 минут (1 академический час).

Срок реализации программы

Срок реализации программы – 36 часов.

Планируемые результаты

По итогам обучения обучающиеся будут знать:

- основные вехи в истории развития отечественной космонавтики и авиации;
- теоретические и практические основы функционирования спутников;

• список основных инженерных программ.

По итогам обучения обучающиеся будут уметь:

- работать в прикладных инженерных программах;
- решать прикладные инженерные задачи в области спутникостроения.

СОДЕРЖАНИЕ ПРОГРАММЫ

Необходимое оборудование: Конструктор ОрбиКрафт 3D в одноосной конфигурации

№	Тема	Количество академических часов
1	История космонавтики. История спутникостроения. Введение в спутникостроение	2 часа
2	Космические аппараты: типы и отличительные особенности	1 час
3	Какие задачи могут решать космические аппараты	1 час
4	Малые космические аппараты. Системы малого космического аппарата. Спутники формата CubeSat	2 час
5	Знакомство с конструктором ОрбиКрафт 3D. Состав конструктора, внутренняя архитектура и функциональные возможности	1 час
6	Знакомство с датчиками и функциональными системами спутника	1 час
7	Интерактивное занятие на усвоение материала	1 час
8	Сборка конструктора ОрбиКрафт 3D	3 часа
9	Подключение к конструктору по Wi-Fi	1 час

10	Механика космического полета: законы Кеплера и основы движения космических аппаратов	2 часа
11	Маховик. Принцип работы и решаемые задачи	1 час
12	Использование маховика в конструкторе ОрбиКрафт 3D	1 час
13	Магнитометр, датчик угловой скорости и солнечные датчики: принцип работы и решаемые задачи	1 час
14	Магнитометр, датчик угловой скорости и солнечные датчики. Вывод показаний датчиков в Web-интерфейс	1 час
15	Что такое калибровка? Алгоритм калибровки магнитометра и датчика угловой скорости	1 час
16	Задача ориентации космического аппарата	1 час
17	Алгоритм системы ориентации и стабилизации по магнитному полю	3 часа
18	Интерактивное занятие на усвоение материала	1 час
19	Как управлять спутником и получать с него данные	1 час
20	Знакомство с программным пакетом Houston CC	1 час

21	УКВ-радиосвязь и ВЧ связь	2 часа
22	Создание фотографии с помощью камеры ОрбиКрафт 3D	2 часа
23	Системы координат в космической технике: как формируются и зачем нужны	1 час
24	Системы координат в конструкторе ОрбиКрафт 3D	1 час
25	Полезная нагрузка: что это такое и какая она бывает	1 час
26	Полезные нагрузки ОрбиКрафт 3D, подключаемые к Arduino	1 час
27	Заключение. Рефлексия	1 час
	Итого:	36 часов

СОДЕРЖАНИЕ УЧЕБНОГО (ТЕМАТИЧЕСКОГО) ПЛАНА

Тема 1. История космонавтики. История спутникостроения. Введение в спутникостроение

Теория. Основные вехи из истории отечественной авиации и космонавтики: первые спутник, пилотируемая космонавтика, орбитальные станции, спутниковые группировки

Тема 2. Космические аппараты: типы и отличительные особенности

Теория. Основы устройства основных видов космической техники. Конструкция космических аппаратов. Типы космических аппаратов

Тема 3. Какие задачи могут решать космические аппараты

Теория. Что такое полезная нагрузка. Какие задачи могут решать космические аппараты. Дистанционное зондирование Земли (ДЗЗ)

Tema 4. Малые космические аппараты. Системы малого космического аппарата. Спутники формата CubeSat

Теория. Малые космические аппараты (МКА): что это такое и зачем они нужны. Основные системы МКА. Формат спутников типа CubeSat

Тема 5. Знакомство с конструктором ОрбиКрафт 3D. Состав конструктора, внутренняя архитектура и функциональные возможности

Практика. Знакомство с конструктором спутника ОрбиКрафт3D. Что входит в конструктор. Функциональные возможности конструктора

Тема 6. Знакомство с датчиками и функциональными системами спутника

Теория. Как работает спутник. Основные типы датчиков на спутнике и принцип их работы. Функциональные системы спутника

Тема 7. Интерактивное занятие на усвоение материала

Практика. Интерактивное занятие на усвоение и закрепление изученного ранее материала

Тема 8. Сборка конструктора ОрбиКрафт 3D

Практика. Сборка конструктора спутника ОрбиКрафт3D по соответствующей инструкции

Тема 9. Подключение к конструктору по Wi-Fi

Практика. Подключение к конструктору по Wi-Fi с последующим программированием в Web-интерфейсе. Знакомство с API и создание первой программы

Тема 10. Механика космического полета: законы Кеплера и основы движения космических аппаратов

Теория. Как летают спутники. Что такое орбита полета. Законы Кеплера и основы механики космического полета. Невесомость

Тема 11. Маховик. Принцип работы и решаемые задачи

Практика. Что такое маховик и зачем он нужен в спутнике. Принцип работы маховика. Задачи, решаемые при помощи маховика

Тема 12. Использование маховика в конструкторе ОрбиКрафт 3D

Практика. Работа с маховиком в конструкторе ОрбиКрафт 3D

Тема 13. Магнитометр, датчик угловой скорости и солнечные датчики: принцип работы и решаемые задачи

Теория. Принцип работы магнитометра, датчика угловой скорости и солнечного датчика

Тема 14. Магнитометр, датчик угловой скорости и солнечные датчики. Вывод показаний датчиков в Web-интерфейс

Практика. Работа с магнитометром в конструкторе ОрбиКрафт 3D

Тема 15. Что такое калибровка? Алгоритм калибровки магнитометра и датчика угловой скорости

Теория. Что такое калибровка датчиков и зачем она нужна **Практика.** Работа с конструктором ОрбиКрафт 3D и изучение алгоритма калибровки магнитометра и датчика угловой скорости

Тема 16. Задача ориентации космического аппарата

Теория. Постановка задачи ориентации космического аппарата. Основные виды ориентации космического аппарата

Тема 17. Алгоритм системы ориентации и стабилизации по магнитному полю

Теория. Основные параметры магнитного поля Земли

Практика. Работа с конструктором ОрбиКрафт 3D. Изучение алгоритма системы ориентации и стабилизации по магнитному полю. Создание и тест управляющей программы

Тема 18. Интерактивное занятие на усвоение материала

Практика. Интерактивное занятие на усвоение и закрепление изученного ранее материала

Тема 19. Как управлять спутником и получать с него данные. Телеметрия.

Теория. Процесс управления спутником. Как получают данные со спутников. Что такое телеметрия. Основные принципы работы Центров управления полетами (ЦУП) и наземных измерительных пунктов (НИП)

Тема 20. Знакомство с программным пакетом Houston CC

Практика. Знакомство с программным пакетом Houston CC. Получение и просмотр телеметрии. Отправка команд и создание графиков

Тема 21. УКВ-радиосвязь и ВЧ связь

Теория. Что такое УКВ-радиосвязь и ВЧ-связь. Принцип работы

Практика. Работа с конструктором ОрбиКрафт 3D. Настройка УКВ частоты радиопередачи конструктора и наземного модуля

Тема 22. Создание фотографии с помощью камеры ОрбиКрафт 3D

Практика. Работа с конструктором ОрбиКрафт 3D. Создание фотографии с помощью камеры ОрбиКрафт 3D. Способы передачи фотографии на наземную станцию.

Тема 23. Системы координат в космической технике: как формируются и зачем нужны

Теория. Что такое система координат. Зачем они нужны в космической технике. Основные системы координат, применяемые в системах космических аппаратов

Тема 24. Системы координат в конструкторе ОрбиКрафт 3D

Практика. Работа с конструктором ОрбиКрафт 3D. Системы координат в конструкторе ОрбиКрафт 3D. Привидение системы координат модуля солнечного датчика к системе координат конструктора

Тема 25. Полезная нагрузка: что это такое и какая она бывает

Теория. Определение полезной нагрузки космического аппарат. Какие бывают полезные нагрузки. Полезная нагрузка ракеты-носителя и космического аппарата

Тема 26. Полезные нагрузки ОрбиКрафт 3D, подключаемые к Arduino

Практика. Работа с конструктором ОрбиКрафт 3D. Решение кейсов. Функции библиотеки UniCan Arduino

Тема 27. Заключение. Рефлексия

Теория. Заключительное занятие курса. Подведение итогов и рефлексия

ФОРМА КОНТРОЛЯ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

В ходе реализации данной Программы используются следующие виды контроля: входной (на первом занятии), текущий контроль (в течение года), итоговый (в конце освоения Программы).

В рамках контроля усвоения материала проводятся: устные опросы, практические занятия с использованием конструктора спутника и итоговый тест.

Устный опрос подразумевает устные ответы учащихся на вопросы учителя.

Практические занятия подразумевают практическую работу с конструктором спутника ОрбиКрафт 3D.

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Для достижения поставленной цели и реализации задач Программы используются следующие методы обучения.

- 1. Методы начального усвоения учебного материала:
 - словесный (объяснение, рассказ, беседа);
 - наглядный (показ, демонстрация, наблюдение);
 - практический (интерактивные задания и практические работы с конструктором спутника).
- 2. Методы закрепления и совершенствования приобретенных знаний:
- проблемно-поисковый (решение практических заданий);
- интерактивные задания и практические работы.

МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Для реализации Программы необходимо наличие следующих *технических средств*:

- конструктор спутника ОрбиКрафт 3D;
- персональный компьютер с доступом в Интернет;
- проектор;

- принтер с возможность черно-белой или цветной печати;
- кликер;
- лазерная указка;
- колонки для воспроизведения аудиоматериалов.

СПИСОКЛИТЕРАТУРЫ

Список литературы, используемой при написании Программы

- 1. Жилинская А. Большая энциклопедия космоса. Москва: Эксмо, 2015. (серия Disney. Удивительная энциклопедия).
- 2. Зигуненко С.Н., Мещерякова А.А., Собе-Панек М.В. О Земле и Космосе. Москва: Аванта, 2018.
- 3. Левитан Е.Ф., Первушин А.И., Сурдин В.Г. Космос. Прошлое, настоящее, будущее. Москва: АСТ, 2018.
 - 4. Xомич Е.О. Космос. Москва: ACT, 2016.

Дополнительная литература

- 1. Сыромятников В.С. 100 рассказов о стыковке и о других приключениях в космосе и на Земле. Ч. 2: 20 лет спустя. Москва: Университетская книга, Логос, 2008.
- 2. Левантовский В.И. Механика космического полета в элементарном изложении. Изд. 2-е, доп. и перераб. Москва: Наука, 1974.
- 3. Уманский С.П. Ракеты-носители. Космодромы. Москва: Рестарт+, 2001.
- 4. Афанасьев И.Б., Батурин Ю.М., Белозерский А.Г. Мировая пилотируемая космонавтика. История. Техника. Люди. Москва: РТСофт, 2005.